锂电池隔膜性能参数和测试方法汇总

2022-07-12  来自: 王泽龙 182 1045 0914

  

隔膜作为锂电池的重要组成部件,对阻隔电子通过防止短路和保证内部离子透过使电池高效、稳定、安全地运行具有重要意义。虽然隔膜自身未发生任何的电化学反应,但其结构和性能却影响电池的界面结构和内阻等,进而影响电池整体的容量、充放电电流密度、循环性能以及安全性等。

 

打开百度APP,查看更多高清图片

 

本文通过对国内外电池隔膜测评标准的归纳和整理,较为全面系统地介绍各测试项目,包括其原理、现有标准及测试方法等,并对其进行相关评述,以期为隔膜行业和相关科研机构对电池隔膜的检测供应一定的参考。

 

1.隔膜的重要性能指标

 

参考美国先进电池联盟(USABC)对锂电池隔膜性能参数的规定,电池隔膜性能大致可以分为理化特性、力学性能、热性能及其电化学性能4个方面。

 

其中,理化特性包括厚度、孔隙率、平均孔径大小和孔径分布、透气性、曲折度、润湿性、吸液率、化学稳定性8项参数;力学性能重要包括穿刺强度、混合穿刺强度和拉伸强度3项参数;热性能包括热闭合温度、熔融破裂温度和热收缩率3项指标;电化学性能包括线性伏扫描测试(LSV)、电化学阻抗谱测试(EIS)、循环性能(CP)、离子电导率和Mac-Mullin值5项参数。

 

2.隔膜的理化特性

 

2.1厚度

 

厚度是锂电池隔膜最基本的参数之一,通常和锂离子的透过性成反比、跟隔膜的力学性能成正比,故在满足机械强度的条件下应尽可能减小隔膜厚度以提升电池性能。

 

目前隔膜中以16、18、20、25、30μm等厚度较为普遍,根据电池不同的用途,其隔膜厚度也有相应的差异。电子数码产品的电池隔膜厚度较小,16μm和18μm较为理想,但以25μm较为常见;混合动力汽车和电动汽车上大功率、大电流电池的隔膜则要较大的厚度,一般为40μm及以上。

 

目前有关厚度测试的标准重要有GB/T6672-2001《塑料薄膜和薄片厚度的测定机械测量法》、GB/T20220-2006(塑料薄膜和薄片样品平均厚度、卷平均厚度及单位质量面积的测定称量法(称量厚度)》、ASTMD374M-13《StandardTestMethodsforThicknessofSolidElectricalInsulation》、DIN53370:2006(TestingofPlasticsFilms-DeterminationoftheThicknessbyMechanicalScanning)和JISZ1702-1994(包装用聚乙烯薄膜》等。

 

由于电池隔膜大都以聚合物作为制造材料,质地柔软,在测量厚度时应尽可能减小接触压力对隔膜形变的影响。尤其是在实验室中利用小型手持式测厚仪进行测量时,若接触压力过大可能因变形而使测量结果失真,因此可借助非接触式测厚仪进行测量。非接触式测厚仪可以做到快速、无损测量,但测试是基于光学原理的点测量,相有关接触式的面测量而言较容易受到隔膜孔隙结构的影响,测试结果波动较大,不利于平均厚度的测量。

 

2.2孔隙率

 

孔隙率是影响隔膜电化学性能的一个重要参数,理论上其余的参数如透气度、吸液率、电化学阻抗等都和此相关。孔隙率被含义为隔膜中微孔的体积和隔膜总体积的比值,目前隔膜生厂商所控制的孔隙率大都为25%-85%,隔膜中的微孔一般为通孔、盲孔和闭孔这3类。目前,隔膜孔隙率的测试方法重要有吸液法、计算法和仪器测试法。

 

吸液法

 

吸液法由于简单易行,适合在实验室中测量,但测试结果和隔膜在液体中的浸润性有关系,因此在测试时尽可能选取容易和隔膜相润湿的溶剂,一般选用无水乙醇、十六烷、正丁醇等。以无水乙醇进行测试时要先称量干膜质量μ0,将隔膜完全浸泡在无水乙醇中一按时间,然后快速将隔膜取出,用滤纸轻轻擦隔膜表面的无水乙醇,再称取湿膜质量μ。根据式(1)计算,即可得到隔膜的孔隙率(ε)。式(1)中,ρ、ρ0分别为隔膜材料和无水乙醇的密度。

 

计算法

 

计算法是目前大多数隔膜生厂商所选用的测试方法,仅要了解基体质量和材料尺寸等参数,利用式(2)可计算得出结果。

 

式(2)中,P为孔隙率,M为样品质量,V为样品体积,ρ为样品密度。该方法中所使用的样品密度可以采用原材料的密度、真密度仪测量或注塑方法测量的结果。不同的密度选取标准对应不同的孔隙率,一般原材料和注塑方法测量的结果包含通孔、盲孔和闭孔3种孔隙结构,而利用真密度仪测量的结果则不包含闭孔结构。

 

仪器测试法

 

仪器测试法精确度高,但要采用特殊的仪器设备,因仪器设备价格昂贵,测试和使用费用较高,目前只限于大型隔膜厂商和部分有条件的科研团队使用。常用的仪器设备有PMI公司的毛细管流动分析仪、压汞仪和压水仪等,测量结果和测量原理、实验条件等密切相关,可以有效测量隔膜的孔径、孔径分布、最大孔径、孔数分布、气体渗透率、液体渗透率、表面积、完整性等细微参数,对隔膜微观结构的分析大有裨益。

 

由于压汞仪要用到汞,存在一定的毒性,而且对测试样品采取破坏性测试,因此逐渐被环保无害、无损性测试的压水仪取代。目前,重要测试标准有GB/T21650.2-2008《压汞法和气体吸附法测定固体材料孔径分布和孔隙度第2部分:气体吸附法分析介孔和大孔》和ASTMD2873-94el《StandardTestMethodforInteriorPorosityofPoly(VinylChloride)(PVC)ResinsbyMercuryIntrusionPorosimetry》。

 

2.3平均孔径大小和孔径分布

 

为了使电池能够持续、稳定地运行,要求电池中的电流密度均一平稳,因此要求隔膜要有适合的孔径大小和孔径分布。若孔径过小,锂离子的透过性会受到限制,从而使电池的内阻增大,降低了电池的整体性能;若孔径太大,在新增锂离子透过性的同时,也容易受到锂离子枝晶生长刺穿隔膜的影响,从而导致短路甚至是爆炸等安全问题。

 

根据USABC的要求,锂离子隔膜的孔径应小于1μm。目前大多数隔膜的平均孔径可以达到0.01~0.05μm,孔径分布越窄、越均匀,电池的电性能越优异。孔径的大小和分布目前重要采用扫描电子显微镜(SEM)直接观测,或者利用PMI公司的毛细管流动孔隙仪或压汞仪等设备直接测量。利用仪器测试孔径大小的基本方式和原理如下:

 

①用液体将待测隔膜孔道完全润湿填满,因毛细现象使得孔内形成正压

 

②将隔膜放入密闭槽中,用气体压力加压将液体由毛细孔道内挤出

 

③根据在单一孔道中的液体完全由毛细孔道内挤出时所施压力和孔道直径的相对关系,依照Laplace方程可得隔膜孔径,Laplace方程如式(3)所示。

 

式(3)中,d为孔直径,⊿P为压力,γ为液体表面张力,θ为隔膜和液体的接触角。不同压力时隔膜中的液体会被陆续挤出并出现一定的气体穿透流量,可根据压力和流量变化的关系来计算孔径大小及孔径分布。

 

目前重要的测试标准有ASTMF316-03《StandardTestMethodsforPoreSizeCharacteristicsofMembraneFiltersbyBubblePointandMeanFlowPoreTest》和ASTME1294-89(1999)《StandardTestMethodforPoreSizeCharacteristicsofMembraneFiltersUsingAutomatedLiquidPorosimeter》等。

 

2.4透气性

 

透气性是表征隔膜气体透过能力的一个指标,能够间接地反映离子的透过性,隔膜行业通常用Gurley值作为评判标准,是指将隔膜置于透气度检测仪内,一定体积的空气在一定的压力下透过规定面积隔膜的时间。

 

目前隔膜行业中多采用日本工业标准,即在1.22kPa压力下测试100mL空气通过1平方英寸隔膜所要的时间。因此,Gurley值的大小和气体的透过性成负相关。Gurley值的检测可以参照ASTMD726-94(2003)《StartdardTestMethodforResistanceofNonporousPapertoPassageofAir),ISO5636-5:2013《PaperandBoardDeterminationofAirPermeance(MediumRange)Part5:GurleyMethod》等标准,通常使用Gurley4110N型透气度检测仪进行检测。此外,常用的检测标准还有ISO15105-1:2007《Plastics-FilmandSheeting-DeterminationofGas-transmissionRate-Part1:DiferentialpressureMethods》,GB/T1038-2000《塑料薄膜和薄片气体透过性试验方法压差法》,ASTMD1434-82(2003)《StandardTestMethodforDeterminingGasPermeabilityCharacteristicsofPlasticFilmandSheeting》等。

 

各标准的测试方法有一定差别,但其原理基本相同,仅气体透过量有差别,因此执行不同标准测试所得结果仍可通过换算得到统一的数据进行比较。根据USABC的标准,Gurley值应要求小于35s/10立方零米。此外,因为Gurley值的大小依赖于空气通过隔膜中多孔结构流动的方式,所以能够从一定程度上反映隔膜内部孔隙的曲折程度,当隔膜的孔隙率和厚度都确按时,通过比较Gurley值可以大致评估隔膜孔隙的曲折度。同时文献也表明透气度均一、稳定的隔膜对提升电池的使用性能具有重要意义。

 

2.5曲折度

 

曲折度是隔膜中有效毛细管的平均长度(即离子实际通过的路程)和隔膜厚度的比值,其理论表达式如式(4)所示。

 

式(4)中,ls是粒子透过隔膜的路程,d为隔膜的厚度。由于离子实际透过隔膜的路程难以测量,通常利用式(5)近似计算得到隔膜的孔道曲折度。

 

式(5)中,Nm为Mac-Mullin值,ε为孔隙率。曲折度可用于表征电池隔膜这类多孔性物质的微观孔隙结构,能够反映隔膜的透过性,并用于描述锂离子透过隔膜的难易程度。

 

图1是不同曲折度隔膜示意图。从图1(a)可以看出当曲折度τ=1时,隔膜孔隙呈理想的平行网柱通道,锂离子可轻易穿梭,此时电池的内阻最低;从1(b)可以看出当τ>1时,隔膜孔隙呈曲折状态,锂离子在隔膜中穿梭路径变长,降低了锂离子在正、负极材料之间往返的速率,因此电池的内阻增大,同时还容易诱导锂离子枝晶的生长而刺破隔膜,引起安全隐患。

 

2.6润湿性和润湿速度

 

隔膜的润湿性和润湿速度有关锂电池的运行具有重要的意义。为高效传递锂离子,位于正、负极材料之间的隔膜须和电解液充分接触,并且具备持久的电解液保持能力,反之则会使电池内阻增大,降低其使用性能。

 

通常,隔膜的润湿性和其所用材料的性质特点有关,亲水性材料较疏水性材料润湿性好,因此可以使用接触角测试仪对隔膜表面和电解液的接触角进行测,通过接触角的大小即可直接比较润湿性的好坏。

 

润湿速度则反应了隔膜在电解液中完全润湿所要的时间(或单位时间内隔膜被润湿的面积),不仅和隔膜的材质(重要是表面张力大小)有关,同时也受孔大小、孔隙率和曲折度等的影响。虽然没有特定的测试方法,但仍然可以采用较为简单的方法对其表征。可以将一定体积的电解液滴落在隔膜表面,然后观察电解液在隔膜中完全扩散所要的时间;或者将隔膜垂直悬挂于电解液上方(一部分浸没在电解液中),再观察电解液上升的高度。

 

图2展示了不同隔膜的接触角测试图和悬挂吸液结果,从图2可以看出,隔膜的润湿性和润湿速度具有很好的关联性,即隔膜的润湿性越好其电解质接触角越小,同时润湿速度也越快(单位时间内吸收的电解液越多,电解液上升的高度越大)。相比于接触角测试,悬挂吸液法由于不必借助测试仪器,且操作简单,在没有接触角测试仪的情况下可作为一种简单快速的检测手段。若有接触角测试仪则可两种方法配合使,一同验证。

 

图2不同隔膜的接触角测试图和电解液吸收高度

 

2.7吸液率

 

吸液率的测定日前尚无特定的测试标准,具体可以参考QB/T2303.11-2008《电池川浆层纸第11部分:吸液率的测定》或SJ/Tl0l71.7-l991《隔膜吸碱率的测定》进行测定。虽然这两个标准并非针对锂电池隔膜,但测试原理仍适用。因此,锂电池隔膜吸液率可通过式(6)进行算。

 

式(6)中,m0和m分别为隔膜浸泡前后的质量。

 

考虑到电解液的毒性和挥发性,实际测试时可采用和隔膜润湿性较好的有机溶剂进行测定,如无水乙醇、正丁醇、环己烷等、由于吸液率的测定结果波动较大,应重复测试多次并取平均值,此外操作过程中应该保持各次测试变量的一致性以减少误差。

 

2.8化学稳定性

 

化学稳定性重要是指隔膜电解液中的耐腐蚀性和尺寸稳定性。由于电解液中含有大量有机物质,因此要求隔膜在浸润时不能和电解液发生化学反应,同时要求有较好的尺寸稳定性,不发生胀缩和变形。目前尚无隔膜化学稳定性的相关测试标准,但要求用于制造隔膜的材料能够保证电池长时间正常使用。

 

具体的测试方法并无统一规定,例如在实验室中可将一定质量和尺寸的隔膜浸没到50℃的电解液中5h左右,然后取出隔膜,洗净并干燥后重新称量和测量尺寸,比较浸泡前后隔膜质量和尺寸的变化。目前市售锂电池隔膜中PE和PP隔膜均能满足化学稳定性要求,因此无须进行化学稳定性测试,而有关其他新开发的隔膜则有必要通过此测试探究其化学稳定性。

 

3力学性能

 

3.1穿刺强度

 

鉴于隔膜生产过程中的蜷曲缠绕和包装,电池的组装和拆卸,以及实际使用中反复充放电等因素,要求隔膜必须具备一定的物理强度以克服上述过程中的物理冲击、穿刺、磨损和压缩等用途带来的损坏,因此要考察隔膜的穿刺强度。具体测试方法可以参照ASTMD3763-10《StandardTestMethodforHighSpeedPuncturePropertiesofPlasticsUsingLoadandDisplacementSensors》和ASTMF1306-90《StandardTestMethodforSlowRatePenetrationResistanceofFlexibleBarrierFilmsandLaminates》等标准,测试结果和穿刺针的规格、穿刺的速度以及夹具的尺寸大小有关系。根据大量的试验和观察,USABC有关锂电池隔膜的穿刺强度规定了指标,即测试结果不可以小于300g/mil(1mil=25.4μm)。

 

3.2混合穿刺强度

 

混合穿刺强度测试的是电极混合物刺穿隔膜造成短路时隔膜所受到的力,方法可以参照NASATM2010-216099《BatterySeparatorCharacterizationandEvaluationProceduresforNASA’SAdvancedLithium-ionBateries》或GB/T21302—2007《包装用复合膜、袋通则》。

 

混合穿刺强度一般用于电池发生短路概率的评估,由于锂电池的隔膜和正、负极的粗糙表面有接触,在电池的组装和使用过程中,电极表面有可能将隔膜刺穿,因此混合穿刺强度相对穿刺强度而言是一种动态的指标参数。USABC规定,锂电池隔膜的混合穿刺强度应大于100kgf/mil(1kgf=9.8N、1mil=25.4μm)。

 

3.3拉伸强度

 

拉伸强度是反映隔膜在使用过程中受到外力用途时维持尺寸稳定性的参数,若拉伸强度不够,隔膜变形后不易恢复原尺寸会导致电池短路。通常参照GB/T1040.3-2006《塑料拉伸性能的测试》和ASTMD882-10《StandardTestMethodforTensilePropertiesofThinPlasticSheeting》对隔膜的拉伸强度进行测试。测试过程中要注意夹具间距、拉伸速率以及试样尺寸等参数的设定。USABC规定,隔膜的拉伸强度须满足如下条件:即当施加1000psi的外力时,隔膜的偏置屈服应小于2%。

 

4热性能

 

4.1热闭合温度

 

热闭合效应是隔膜对锂电池的一种特殊保护机制,即当电池的使用温度过高时,隔膜会自动将原来可以让锂离子自由透过的微孔闭合,阻止锂离子在正、负极之间的交换,使电池内阻增大,从而防止了因温度过高和电流过大而造成的短路甚至是爆炸的危险。

 

但是隔膜的闭合性是单向不可逆的,即一旦发生自闭合效应,电池便报废、不再具有使用价值。隔膜通常采用聚合物作为基材,因此当电池的温度达到了隔膜基材的熔点时,聚合物熔融流动,从而导致原有的微孔结构闭合,即基材的熔点一般为隔膜的热闭合温度。目前市售隔膜中,PP单层隔膜的热闭合温度为160-165℃,PE单层隔膜的热闭合温度为130-135℃。

 

热闭合温度的测量重要依靠差示扫描量热法(DSC)和电阻突变法,图3是3种隔膜的DSC测试图,图4是Celgard2325(PP/PE/PP)隔膜电阻随温度的变化曲线。

 

图3Celgard2730(PE)、Celgard2400(PP)、Celgard2325(PP/PE/PP)隔膜的DSC测试图

 

图4Celgard2325隔膜电阻随温度变化曲线

 

从图3和图4中可分别发现,在热闭合温度附近有熔融峰的出现和电阻的突变。电阻突变法即在升温的条件下测试电池的电阻,当电阻瞬间升高时所对应的的温度便是隔膜的热闭合温度。具体操作过程可以参考UL2591-2009《StandardforsafetyOutlineofInvestigationforBatterySeparators》和INASATM2010-2l6099

 

4.2熔融破裂温度

 

隔膜的熔融破裂温度是指温度达到热闭合温度后进一步上升,隔膜基材由于高温熔融而处于黏流状态,力学性能下降并自发破裂时的温度。由于隔膜破裂等效于电路中发生了短路,因此电池的电阻将下降为零。熔融破裂温度可以采用电阻突变法进行测定,即测试过程中电阻为零时所对应的温度,或者利用热机械分析法(TMA)进行测定。TMA法可以参照NASATM2010-216099测定,该办法除可测熔融破裂温度外还可以获得隔膜的收缩起始温度等信息(如表1所示)此外,还可以在隔膜上附着一定质量的物体,再将隔膜置于程序升温环境中,通过观察重物掉落时的温度来大致估算熔融破裂温度。

 

表1Celgard不同隔膜TMA数据

 

例如,单层PP膜的熔融裂温度比单层PE膜高约30℃,三层PP/PE/PP复合膜的闭孔度和单层PE膜接近而熔融破裂温度却和单层PP膜相近,表明三层复合隔膜在较低的温度下闭孔后仍有30℃左右的温度范围保持较高的电阻,从而保证电池的安全。

 

4.3热收缩率

 

由于在高温下隔膜易发生收缩形变,因此可以通过热收缩率来表征隔膜高温下的尺寸稳定性。例如,单层的PE隔膜放置在120℃下仅10min就有近10%的热收缩,有关锂电池隔膜而言,其热收缩率在90℃下放置60min时应小于5%。

 

当前隔膜行业对热收缩率的测试标准重要有GB/T135l9-2016《包装用聚乙烯热收缩薄膜》、ASTMD2732-08《StandardTestMethodforUnrestrainedLinearThermalShrinkageofPlasticFilmandSheeting》、ISO14616:2004《PlasticsHeatshrinkableFilmsofPolyethylene,EthyleneCopolymersandTheirMixtures-DetenninatofShrinkageStressandContractionStress》、DIN53369:1976《TestingofPlasticFilms;DeterminationoftheShrinkingStress》等。此外,还可以在实验室根据一定温度下隔膜面积的收缩值和原始面积之比简单估算,可用式(7)计算

 

式(7)中,S0是隔膜加热前的面积,S是隔膜加热发生收缩后的面积。例如,图5为实验室中普通PE膜和经勃姆石表面涂覆的PE膜在不同温度下放置30min后的热收缩比较图,从隔膜热处理后的面积大小可以判断热收缩性能,但具体的热收缩率需借助式(7)计算。

 

图5普通PE膜和经勃姆石表面涂覆的PE膜在不同温度下的热处理比较图

 

总体来说,实验室条件下隔膜热收缩率的计算并不能达到精准的程度,但基本能够满足定性分析的要求,且简单易行,只要保证同一批次隔膜的测试条件一致即可。

 

5电化学性能

 

5.1线性伏安扫描测试(LSV)

 

为了研究隔膜的电化学稳定性,通常对其进行线性伏安扫描测试。具体的操作方法是将隔膜夹在不锈钢片和金属锂片之间,组装成为扣式电池,其中不锈钢片作为工作电极、金属锂片作为参比电极,并用IVIUM电化学工作站对其测试。通常可以采用1.0mV/s的扫描速率,电压则可以从开路设置到6.0V。

 

5.2电化学阻抗谱测试(EIS)

 

电化学阻抗谱是研究电化学界面过程的重要方法,被广泛应用于研究锂离子在碳材料和过渡金属氧化物中的嵌入和脱出过程,同时也被用于研究电池中隔膜对锂离子透过性的影响。一般情况下,用交流法测量的电化学阻抗谱图中,可以得到电池的内阻(和隔膜的电阻有关),因此可以用此方法得到电池的电荷转移电阻。采用IVIUM电化学工作站测试,频率为0.1Hz一100kHz。

 

5.3循环性能(CP)

 

电池的循环性能重要由循环次数、首次放电容量和保留容量3个指标来衡量。电池持续重复进行多次的充放电行为称为循环充放电,电池循环充放电的次数称为循环次数;首次放电容量是指电池完全充满电后第一次的放电容量;保留容量是指完成一定次数的循环充放电后,电池依旧保持的放电容量。通常至少循环100次以后,得到的循环性能的数据才有说服力。因此,隔膜的性能优劣,直接影响到电池的循环性能。

 

5.4离子电导率

 

离子电导率和离子电阻率互为倒数,实际测试得到的通常是电池的离子电阻,即体积电阻。而试验测试得到的离子电阻(Rb)是隔膜电阻(Rs)和电池中电解液的电阻(Re)之和,如式(8)所示。

 

为便于计算,可忽略Re的影响,近似地认为Rs=Rb,再根据式(9)和(10)即可求得隔膜的电导率(σs)。

 

式(9)~(10)中,ρs是隔膜的电阻率,为隔膜的有效面积(即电极片的面积),d为隔膜的平均厚度。因此隔膜的电导率(σs)如式(11)所示。

 

5.5Mac-Mullin值

 

Mac-Mullin值(Nm)是指在饱和电解液中的多孔介质的电阻和相同体积的饱和电解液电阻的比值。因实际测得的电池体积电阻(Rb)也包含了隔膜的电阻(Rs)和电解液的电阻(Re),因此只需再测量电解液的电阻值(Re)即可根据式(12)计算Nm。

 

因此,Mac-Mullin值实际上比离子电导率更能够说明隔膜对锂离子的透过性,因为它消除了电解液的影响。

声明: 本网站所发布文章,均来自于互联网,不代表本站观点,如有侵权,请联系删除(QQ:3518233133)

本文TAG:

相关资讯 更多>>